Reactions of RSe–EMe₃ (E = Si, Ge, Sn, Pb) with XeF_2 – RSe–F Equivalents in the Fluoroselenenylation of Acetylenes^[1]

Helmut Poleschner,*[a] Matthias Heydenreich,[b] and Uwe Schilde[c]

Dedicated to Professor Egon Fanghänel on the occasion of his 65th birthday

Keywords: Xenon / Fluorine / Selenides / Acetylenes / Silicon / Germanium / Tin / Lead

Selenides of the type R^1Se – EMe_3 (E=Si, Ge, Sn, Pb) react with xenon difluoride by cleavage of the Se–E bond to yield the R^1Se –F intermediate and the fluorides Me_3E –F, whereas the Se–C bond in PhSe–tBu (E=C) is stable against XeF_2 . The presence of R^1Se –F intermediates is confirmed by addition to acetylenes (4-octyne, 3-hexyne). Thus, the fluorose-lenenylation of acetylenes gives fluoro(organylseleno)olefins in preparative yields. In the cases of E=Si, Ge, Sn, and Pb,

aryl and n-alkyl groups are suitable as the substituent R^1 . The X-ray crystal structural analysis of (E)-3-(p-carboxyphenylseleno)-4-fluorohex-3-ene – the first example of an uncharged fluoroselenoolefin synthesized from p-EtO $_2$ C-C $_6$ H $_4$ -Se-SnMe $_3$, XeF $_2$, and 3-hexyne followed by an ester hydrolysis – shows that the addition of the selenenylfluoride intermediate to the acetylene proceeds via a trans-addition, as is known for the R_2 Se $_2$ -XeF $_2$ reagents.

Introduction

Selenium reagents are good tools for the introduction of fluorine into organic substrates. Known methods for the addition of PhSe–F equivalents to olefins and acetylenes are PhSeBr–AgF–ultra sound, PhSeCl–AgF–MeCN, AgF–MeCN, AgF–MeCN, AgF–MeCN, AgF–MeCN, Agr–MeCN, A

In earlier papers we reported a highly efficient synthesis of vicinal fluoro(organylseleno)olefins by fluoroselenenylation of acetylenes with R_2Se_2 – XeF_2 reagents. This method was shown to be useful in a very broad range concerning the acetylenes (symmetrical and unsymmetrical dialkylacetylenes, arylalkylacetylenes, terminal acetylenes, and cycloalkynes) and the applied diselenides (diaryl-,

primary and secondary dialkyldiselenides, functionalized diselenides). The fluoroselenoolefins were characterized by X-ray crystal structural analysis in the form of a fluorovinyldimethylselenonium picrate as (*E*)-isomers,^[17,18] and investigated in detail by ¹³C, ¹⁹F, and ⁷⁷Se NMR spectroscopy.^[19]

Preliminary experiments showed that silyl selenides of the type PhSe-SiR₃ (PhSe-SiMe₃ and PhSe-SitBuMe₂) react with XeF₂ by cleavage of the Se–Si bond to yield the PhSe– F intermediate which is added to acetylenes.^[16] The high affinity of the fluorine for the silicon is the driving force responsible for the Se-Si bond breaking. However, nothing is known about the reactivity of the selenides RSe-EMe₃ of the higher group 14 elements, i.e., the corresponding germanium, tin, and lead selenides, with XeF₂. Therefore, the question was which of the trimethylelementorganyl selenides R^1 Se–EMe₃ (E = C, Si, Ge, Sn, Pb) would react with XeF₂ to give the R¹Se-F intermediate and Me₃E-F by cleavage of the Se-E bond. Thus, the aim of the present paper is to report on our investigations of the reactions of the selenides $R^1Se-EMe_3$ (E = C, Si, Ge, Sn, Pb) with XeF₂. Aryl and *n*-alkyl groups were used as the substituents R¹. In order to prove their formation, the R¹Se–F moieties were trapped with simple reactive dialkylacetylenes (3hexyne, 4-octyne) as model compounds to give fluoro(organylseleno)olefins (Scheme 1).

1307

Scheme 1. Topic of the investigation

Freie Universität Berlin, Fabeckstrasse 34–36, D-14195 Berlin, Germany Fax: (internat.) + 49(0)-30/83852424

E-mail: hpol@chemie.fu-berlin.de

Am Neuen Palais 10, D-14469 Potsdam, Germany

Fax: (internat.) + 49(0)-331/9771473 E-mail: us@conrad.chem.uni-potsdam.de

[[]a] Institut für Chemie, Anorganische und Analytische Chemie, Freie Universität Berlin,

[[]b] Institut für Organische Chemie und Strukturanalytik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany

E-mail: heydenr@serv.chem.uni-potsdam.de

Institut für Anorganische Chemie und Didaktik der Chemie,
Universität Potsdam,

Results and Discussion

The compounds investigated are shown below:

Si Selenides

Ethylselenotrimethylsilane (1b) and phenylselenotrimethylsilane (1c) react in CH_2Cl_2 at -20 °C with one equivalent of XeF_2 to give the trimethylfluorosilane (10) and the R^1Se-F intermediate by cleavage of the Se-Si bond. 4-Octyne (6) was added to the selenenyl fluoride intermediates to give the fluoroselenoolefins 8b,c in good yields (72–82%) (Scheme 2). Me_3Si-F (10) was identified after reaction of 1b with XeF_2 and 6 in $CDCl_3$ by ^{19}F NMR spectroscopy. Thus, the reaction of the $R^1Se-SiMe_3$ 1 with XeF_2 takes place analogous to the synthesis of the trialkylsilyl halides R_3Si-X (X=Cl, Br, I) from $PhSe-SiR_3$ and the halogens. $[^{20}]$

$$R^{1}Se-SiMe_{3} \xrightarrow{XeF_{2}, CH_{2}Cl_{2}, -20^{\circ}C, 20 \text{ min}} -Me_{3}Si-F (10)$$
[R¹Se-F]

Scheme 2. Reactions of the Si selenides

Ge Selenides

Ethylselenotrimethylgermane (**2b**) and phenylselenotrimethylgermane (**2c**) react in CH_2Cl_2 at -20 °C with XeF_2 in a molar ratio of 1:1; the intermediates are trapped with **6**.

$$R^{1}Se-GeMe_{3} \xrightarrow{XeF_{2}, CH_{2}Cl_{2}, -20^{\circ}C, 20 \text{ min}} -Me_{3}Ge-F (11)$$

$$[R^{1}Se-F]$$

Scheme 3. Reactions of the Ge selenides

The resulting fluoroselenoolefins **8b** and **8c** (73–75% yield) showed the cleavage of the Se–Ge bond caused by the fluorinating agent. After the reaction of **8c** with XeF₂ and **6** in CDCl₃, Me₃Ge–F (**11**) was observed by ¹⁹F NMR spectroscopy (Scheme 3).

Sn Selenides

Methylselenotrimethylstannane (3b) and phenylselenotrimethylstannane (3c) react in CH₂Cl₂ at -20 °C with one equivalent XeF₂ to give trimethyltin fluoride (12), which precipitates immediately. The corresponding fluoroselenoolefins 8a and 8c (66-70% yield) were obtained after addition of 6 to this suspension (Scheme 4). The reaction of p-(ethoxycarbonyl)-phenylselenotrimethylstannane (3d) with XeF₂ and 3-hexyne (7) led to the formation of trimethyltin fluoride (12) and the adduct 9d. Its yield was with 26%, as in the case of the corresponding p-CO₂Et-substituted diphenyldiselenide,[17] much smaller than with nonfunctionalized PhSe precursors.[16,17] Me₃Sn-F, which was isolated in almost quantitative yields, was confirmed by mass spectrometry and by 119Sn Mößbauer spectroscopy. The resulting spectra were in good agreement with the literature.^[21] The elementary composition of the ions [M⁺], $[M^+ - Me]$ and $[M^+ - F]$ was confirmed by high-resolution mass spectrometry. The cleavage of the Se-Sn bond by fluorination of the tin selenides 3 with XeF₂ corresponds to the reaction of R'Se-SnR₃ with iodine to give R₃Sn-I and R'₂Se₂.[22]

The carboxylic acid **9e** was synthesized by saponification of the carboxylic acid ester **9d**. Suitable crystals for the X-ray structural analysis could be obtained from *n*-hexane (Scheme 4).

Pb Selenides

Analogous to the tin compounds 3, precipitation of trimethyllead fluoride (13) occurred during the reaction of methylselenotrimethylplumbane (4a) or phenylselenotrimethylplumbane (4c) with one equivalent XeF₂ at -20 °C in CH₂Cl₂. Subsequent reaction of the selenenyl fluoride intermediates with 6 resulted in the fluoroselenoolefins 8a and 8c (63–70%) (Scheme 5). Me₃Pb–F (71–83%) was characterized by mass spectrometry after isolation. The elementary composition of the ions [M⁺ – Me] and [M⁺ – F] was confirmed by high-resolution mass spectrometry.

$$R^{1}Se-SnMe_{3} = \frac{XeF_{2}, CH_{2}Cl_{2}, -20^{\circ}C, 20 \text{ min}}{-Me_{3}Sn-F (12)}
 [R^{1}Se-F]$$

1. KOH, EtOH,
$$H_2O$$
,

r. t., $6h$

Se

 CO_2Et

1. KOH, EtOH, H_2O ,

F

Et

 CO_2H
 CO_2H

Scheme 4. Reactions of the Sn selenides

$$\begin{array}{c}
 R^{1}Se-PbMe_{3} \\
 \hline
 4a, c
\end{array}$$

$$\begin{array}{c}
 XeF_{2}, CH_{2}Cl_{2}, -20^{\circ}C, 20 \text{ min} \\
 -Me_{3}Pb-F (13)
\end{array}$$
[$R^{1}Se-F$]

Scheme 5. Reactions of the Pb selenides

C Selenides

The reaction of *tert*-butylphenylselenide (**5c**) with XeF₂, under the conditions described above, differs from that of compounds **1-4**. The PhSe–F intermediate was not obtained and the adduct **8c** could not be obtained after treatment with **6** (Scheme 6). Cleavage of the Se–C bond by XeF₂ was not observed. This is also reported for the compound PhSe–CN.^[16] However, a possible fluorination of the selenide **5c** to *t*BuPhSeF₂, in analogy to Me₂SeF₂,^[23] was not investigated.

Scheme 6. Experiment with a C selenide

The mass spectra of the synthesized fluoroselenoolefins 8a-c and 9d,e showed the correct molecular peak with the expected isotope pattern for one Se atom. The high resolu-

tion of these peaks proved the elemental composition of these compounds. The ¹³C NMR spectra of **8a–c** and **9d,e** agreed well with the spectra of the products obtained from the R'₂Se₂–XeF₂ reagents.^[16,17] A detailed assignment and discussion of the spectra of these compounds is given in ref.^[19]

X-ray Crystal Structure Analysis of 9e

Although the structure of the selenonium ion Pr(F)C= CPr(Se+Me₂) has previously been reported, [17,18] this is the first structure of a noncharged vicinal fluoroselenoolefin. Details of the structure solution and refinement are given in the experimental section (Table 4). As can be seen from Figure 1, this compound possesses an (*E*)-configuration [torsional angles: Se-C3-C4-F -170.1(4)°; C2-C3-C4-F 3.0(9)°]. This is the most important structural information regarding the reaction course: *trans*-addition of the R¹Se-F intermediate (R¹Se-SnMe₃ + XeF₂) to an acetylene.

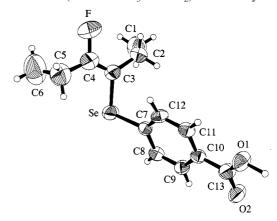


Figure 1. ORTEP plot (thermal ellipsoids 40%) of the molecular structure of the carboxylic acid **9e**; selected bond lengths [Å] and angles [°]: C1–C2 1.472(10), C2–C3 1.507(8), C3–C4 1.285(8), C4–C5 1.498(10), C5–C6 1.353(11), F–C4 1.385(7), Se–C3 1.914(5), Se–C7 1.906(4), C7–C12 1.384(6), C7–C8 1.391(6), C8–C9 1.374(7), C9–C10 1.380(6), C10–C11 1.389(6), C11–C12 1.384(6), C10–C13 1.466(6), C13–O2 1.247(6), C13–O1 1.280(5), O1–H1 1.18(5); C3–C4–F 115.6(6), C3–C4–C5 132.9(6), C4–C3–Se 117.4(5), C4–C3–C2 123.9(5), C7–Se–C3 100.3(2), Se–C3–C4–F -170.1(4), C2–C3–C4–F 3.0(9), C7–Se–C3 -C2 64.4(4), C12–C7–Se–C3 23.5(4), C1–C2–C3–C4 –98.1(8), C3–C4–C5–C6 –107.8(12).

Compared with the above-mentioned selenonium ion [C-F 1.368(3) Å, C-Se 1.927(2) Å, C=C 1.328(3) Å] **9e** has a longer C-F and a shorter C-Se bond (Se-C3). The considerably shortened C=C distance in 9e is especially noticeable. This corresponds well with the longer C-F bond and, thus, with a stronger participation of the mesomeric structure A against B and C in the electronic structure of the fluoroselenoolefins than of the mesomeric structure D against E and F in the selenonium ion. The C3-C4-C5 bond angle in 9e is made considerably larger by the fluorosubstitution as it was found also in other fluoroolefins and the selenonium ion [133.8(2)°]. Both of the ethyl substituents on the C=C moiety are situated behind the π bond plane with torsional angles of -98.1(8)° (C1-C2-C3-C4) and -107.8(12)° (C3-C4-C5-C6), respectively. The Ar-Se substituent is situated in front of the C=C plane with a torsional angle of 64.4(4)° (C7–Se–C3–C2); the Ar group is twisted towards the C=C double bond with a torsional angle of 23.5(4)° (C12–C7–Se–C3). Obviously, in this conformation, the steric interaction between the H atoms on C2 and in the o-position of the aryl group is small. Two molecules are linked by two hydrogen bonds between O1 and O2 via H1 forming pairs [O1···O2 2.640(4) Å, H1···O2 1.489(11) Å, O1–H1···O2 164.55(4)°; symmetry operator 1 – x, 1 – y, -z].

Conclusions

XeF₂ is able to cleave the Se–Si, Se–Ge, Se–Sn or Se–Pb bond of the selenides R¹Se–EMe₃ with E = Si, Ge, Sn or Pb, respectively, to give R¹Se–F intermediates and Me₃E–F fluorides. By contrast, the Se–C bond in PhSe–tBu is not broken by XeF₂. The formation of R¹Se–F intermediates is confirmed by their addition to acetylenes. The yields of the obtained fluoro(organylseleno)olefins are in the same range as in the case of XeF₂–R½Se₂ reagents.[¹¹6,¹¹] In this reaction the substituents R¹ can be n-alkyl or aryl. The reaction proceeds as a trans-addition of the R¹Se–F intermediates to acetylenes, as is the case for R½Se₂–XeF₂ reagents.[¹¹7,¹8] Comparable yields of fluoro(organylseleno)olefins from R¹Se–EMe₃–XeF₂ and R½Se₂–XeF₂, and the corresponding stereochemistry of additions for the two reactions, indicate that the same reaction course is taking place in both cases.

Of further interest is whether there are other groups besides the Me₃Si and *t*BuMe₂Si moieties, for example, OH-protecting groups^[24–27] such as Me₂PhSi, *i*Pr₃Si and *t*BuPh₂Si, that permit cleavage of R¹Se–SiR₃ by XeF₂. A further question is a possible bond cleavage by XeF₂ of other selenides of elements with a strong affinity to fluorine, e.g. compounds with Se–B, Se–Al, and Se–P bonds.

Syntheses of the Selenides R¹Se–EMe₃ 1–4

Different methods are known to synthesize selenides of the type $R^1Se-EMe_3$ (E = Si: PhLi/Se/Me $_3SiC1$,[²⁸] Ph $_2Se_2$ /Na(THF)/Me $_3SiC1$,[^{29,20c}] Ph $_2Se_2$ /Na(THF)/R $_3SiC1$ (18-crown-6),[²⁴] PhSeH/BuLi/Me $_3SiC1$,[^{20c}] PhSeH/Me $_3SiH$ /Rh-cat.[^{20c}] and PhMgBr(Et $_2O$)/Se/Me $_3SiC1$ resp. (Me $_3SiD_2Se$ /Na(liq. NH $_3$)/RX;[³⁰] E = Ge: PhSeSiMe $_3$ /Me $_3GeF^{[28]}$ and Ph $_2Se_2$ /Na(THF)/Me $_3GeC1$;[³¹] E = Sn: PhSeH/

 $\begin{array}{llll} Me_3SnCl/NaOH(H_2O),^{[32]} & RSeH/Me_3SnCl/Et_3N,^{[33,22]} & Li-[Al(SeMe)_4]/Me_3SnCl,^{[34]} & Me_6Sn_2/BuLi/Se/RX & (R=al-kyl);^{[35]} & E=Pb. & Only & two & patents & are & known: \\ RMgBr(Et_2O)/Se/Me_3PbCl & (R=Me,Ph).^{[36]} & \end{array}$

In this work, we report a uniform synthesis of the compounds 1–4 using the same selenium starting materials. The disclenides $R_2^1 Se_2$ (14) were found to be most suitable, because of the possibility of their quantitative reduction to their corresponding lithium selenolates $R^1 SeLi$ in liquid ammonia with lithium. This way is superior to the reduction in the heterogeneous system Na/THF. Further reaction with the chlorides Me_3E –Cl to the compounds 1–4 was carried out in THF after complete removal of the ammonia. The reaction course using the bis(trimethylsilyl)selenide (15) was chosen for the synthesis of ethylselenotrimethylsilane 1b only. The reduction of the functionalized disclenide 14d was carried out with NaBH₄ and subsequent stannylation in EtOH (Scheme 7).

$$(EtO_2C - Se)_2 \xrightarrow{1. \text{ NaBH}_4, \text{ EtOH}} EtO_2C - Se-SnMe_3$$

$$14d \qquad 3d$$

Scheme 7. Syntheses of the selenides 1-4

For R¹Se–EMe₃ derivatives, NMR spectroscopic data are known for only a few Ge^[31a,37] and Sn compounds.^[33,38] For this reason, ¹³C and ⁷⁷Se NMR data of the compounds **1b,c**, **2b,c**, **3a,c,d**, **4a,c** and **15** are given in Table 1.

Experimental Section

The disclenides **14a**,**b**,^[39] **14d**,^[17] the sclenides **5c**^[40] and **15**^[30,41] and XeF₂^[42] were prepared by literature methods. **14c**, the acetylenes **6** and **7** and the chlorides Me₃E–Cl (E = Si, Ge, Sn, Pb) are commercially available. – Mass spectra were recorded with Finnigan–MAT 95 and Finnigan–MAT 711 at 70 eV and 80 eV, respectively. The measurements of high-resolution spectra were carried out by the peak-match method using PFK as a reference substance. – NMR spectra were measured with a Bruker ARX 300 spectrometer in CDCl₃ in 5 mm sample tubes at room temperature: ¹³C at 75.47 MHz (¹³C reference CDCl₃: δ = 77), ¹⁹F at 282.40 MHz (¹⁹F reference CFCl₃: δ = 0), and ⁷⁷Se at 57.25 MHz (⁷⁷Se reference Me₂Se: δ = 0).

Reactions of R¹Se–EMe₃ (1–4) with XeF₂/Acetylene. – General Procedure: XeF₂ (4.1 mmol, 694 mg) was added in small portions un-

Table 1. ¹³C and ⁷⁷Se NMR chemical shifts (δ) and related coupling constants (Hz) of compounds 1-4 and 15

Cor	npound	¹³ C Pos. 1	2	3	4	$EMe_3 (^1J_{E,C})$	77 Se ($^{1}J_{Se,E}$)
15	(Me ₃ Si) ₂ Se					4.5	-332.4 (107.0)
1b	EtSe-SiMe ₃	12.2	18.6			(52.7) 1.7	(107.0) -64.9
1c	PhSe-SiMe ₃	$(^{1}J_{\text{Se,C}} = 51.0)$ 125.1	136.5	128.7	126.8	(52.3) 1.4	(107.3) 85.8 (102.3)
2b	EtSe-GeMe ₃	12.1	18.9			2.1	(103.3) -44.6
2c 3a	PhSe-GeMe ₃ MeSe-SnMe ₃	$(^{1}J_{\text{Se,C}} = 54.3)$ 126.1 -4.0	136.4	128.7	126.7	2.2 -6.1	97.3 -287.6
3c	PhSe-SnMe ₃	126.0	136.2	128.6	126.2	[316.6 (¹¹⁹ Sn), 288.7 (¹¹⁷ Sn)] -5.0 [339.2 (¹¹⁹ Sn), 324.2 (¹¹⁷ Sn)]	[1002.2 (¹¹⁹ Sn), 957.8 (¹¹⁷ Sn)] 8.1 [969.8 (¹¹⁹ Sn), 926.5 (¹¹⁷ Sn)]
3d	$p ext{-EtO}_2 ext{CC}_6 ext{H}_4 ext{SeSnMe}_3^{[a]}$	133.8	136.0	129.4	128.3	-4.8	[505.8 (511), 520.5 (511)]
4a	MeSe-PbMe ₃	-3.1				[341.2 (¹¹⁹ Sn), 326.0 (¹¹⁷ Sn)] 4.7	-210.2 (1160.8)
4c	PhSe-PbMe ₃	$(^2J_{\text{Pb,C}} = 19.4)$ 131.4	136.5	128.4	126.0	(239.4) 7.1 (232.3)	(1169.8) 73.5 (1114.1)

[[]a] 166.2, 60.7, 14.2 (CO₂Et).

der argon to a solution of 4 mmol selenide 1–4 in 20 mL of dry CH_2Cl_2 at -20 °C and stirred for 30 min. The acetylene 6 or 7 (4 mmol) was then added and stirred for 1 h at -20 °C and for 1 h at room temperature. In the cases of 3 and 4 the precipitate Me_3Sn-F (10) and Me_3Pb-F (11), respectively, was separated and washed with n-pentane (2 \times 10 mL) and the solvent was then removed under vacuum. The crude product was purified by column chromatography (10 cm silica gel, diameter 2 cm, n-hexane). For yields see Table 2.

Table 2. Reactions of the selenides 1-4 with XeF_2 and acetylenes $6,\,7$ to the products $8,\,9,\,12$ and 13

Starting material	Products	Yields
1b, XeF ₂ , 6	8b	0.68 g (72%)
1c, XeF ₂ , 6	8c	0.94 g (82%) ^[16]
2b, XeF ₂ , 6	8b	0.69 g (73%)
2c, XeF ₂ , 6	8c	0.86 g (75%)
3a, XeF ₂ , 6	8a, 12	0.63 g (71%), 0.66 g (90%)
3c, XeF ₂ , 6	8c, 12	0.75 g (66%), 0.70 g (96%)
3d, XeF ₂ , 7	9d, 12	0.34 g (26%), 0.72 g (98%)
4a, XeF ₂ , 6	8a, 13	0.56 g (63%), 0.90 g (83%)
4c, XeF ₂ , 6	8c, 13	0.79 g (69%), 0.77 g (71%)

(*E*)-4-Fluoro-5-methylselenooct-4-ene (8a): HR-MS (C₉H₁₇F⁸⁰Se): calcd. 224.04794; found 222.04771. – ¹³C NMR (CDCl₃): δ = 6.2 (Se*C*H₃), 13.3 (C-8), 13.4 (C-1), 20.2 (C-2), 21.6 (C-7), 31.6 (³J_{F-C} = 6.6 Hz, C-6), 33.0 (²J_{F-C} = 28.7 Hz, C-3), 109.2 (²J_{F-C} = 19.1 Hz, C-5), 160.5 (¹J_{F-C} = 263.7 Hz, C-4).

(*E*)-4-Ethylseleno-5-fluorooct-4-ene (8b): HR-MS ($C_{10}H_{19}F^{80}$ Se): calcd. 238.06359; found 238.06333. – ¹³C NMR (CDCl₃): δ = 13.3 (C-1), 13.4 (C-8), 15.5 (SeCH₂CH₃), 19.1 (SeCH₂CH₃), 20.3 (C-7), 21.6 (C-2), 32.0 (³ J_{F-C} = 6.7 Hz, C-3), 33.0 (² J_{F-C} = 28.8 Hz, C-6), 108.0 (² J_{F-C} = 18.8 Hz, C-4), 161.4 (¹ J_{F-C} = 264.3 Hz, C-5).

(*E*)-4-Fluoro-5-phenylselenooct-4-ene (8c): HR-MS ($C_{14}H_{19}F^{80}Se$): calcd. 286.06359; found 286.06381. – ¹³C NMR (CDCl₃): δ = 13.4 (C-8), 13.5 (C-1), 20.3 (C-2), 21.7 (C-7), 32.4 ($^{3}J_{F-C}$ = 5.9 Hz, C-6), 33.2 ($^{2}J_{F-C}$ = 28.2 Hz, C-3), 109.7 ($^{2}J_{F-C}$ = 20.9 Hz, C-5), 126.3 (*p*-C), 129.1 (*m*-C), 130.3 (*o*-C), 130.8 (*i*-C), 163.3 ($^{1}J_{F-C}$ = 267.3 Hz, C-4).

(*E*)-3-[(*p*-Ethoxycarbonyl)phenylseleno]-4-fluorohex-3-ene (9d): HR-MS (C₁₅H₁₉FO₂⁸⁰Se): calcd. 330.05342; found 330.05235. – ¹³C NMR (CDCl₃): δ = 11.4 (C-6), 13.4 (C-1), 14.2 (OCH₂CH₃), 24.5 (³J_{F-C} = 6.9 Hz, C-2), 25.0 (²J_{F-C} = 28.8 Hz, C-5), 60.8 (OCH₂CH₃), 109.4 (²J_{F-C} = 21.6 Hz, C-3), 128.1 (*p*-C), 128.6 (*o*-C), 130.0 (*m*-C), 138.5 (*i*-C, C–Se), 165.4 (¹J_{F,C} = 269.2 Hz, C-4), 166.2 (CO₂Et).

Characterization of Me₃E–F (10–13): EtSe–SiMe₃ (1b; 1 mmol, 181 mg) and PhSe–GeMe₃ (2c; 1 mmol, 274 mg) and XeF_2 (1 mmol, 169 mg) reacted with 4-octyne (6; 1 mmol, 110 mg) in 2 mL CDCl₃ as already described.

Me₃Si–F (10): ¹⁹F NMR (CDCl₃): $\delta = -158.2 (-159.3 \text{ ppm}^{[43]}).$

Me₃Ge-F (11): ¹⁹F NMR (CDCl₃): $\delta = -192.1$ (-190.5 ppm^[44]).

Me₃Sn–F (12): MS: m/z=184 [M⁺], 169 [M⁺ – Me], 165 [M⁺ – F]. – HR-MS (C₃H₉F¹²⁰Sn): calcd. 183.97103; found 183.97531. (C₂H₆F¹²⁰Sn) [M⁺ – Me]: calcd. 168.94755; found 168.94523. (C₃H₉I²⁰Sn) [M⁺ – F]: calcd. 164.97262; found 164.97543. – ¹¹⁹Sn-Mößbauer (source ¹¹⁹mSn in CaSnO₃, reference: SnO₂, sample temperature 77 K): $\delta=1.357$ mm/s, $\Delta=3.840$ mm/s, $\Gamma=3.840$ mm/s, $\Gamma=3$

Me₃Pb–F (13): MS: m/z = 257 [M⁺ – Me], 253 [M⁺ – F]. – HR-MS (C₂H₆F²⁰⁸Pb) [M⁺ – Me]: calcd. 275.02199; found 275.02688. (C₃H₉²⁰⁸Pb) [M⁺–F]: calcd. 253.04707; found 253.04321.

(*E*)-3-(*p*-Carboxyphenylseleno)-4-fluorohex-3-ene (9e): The saponification of the ester 9d was carried out with KOH/EtOH/H₂O, as described in ref.^[17] Yield of 9e (from 2 mmol) 0.57 g (95%), m.p. 115–117 °C (*n*-hexane). – HR-MS ($C_{13}H_{15}FO_2^{80}Se$): calcd. 302.02212; found 302.02003. – ¹³C NMR (CDCl₃): δ = 11.4 (C-6), 13.5 (C-1), 24.6 (³ J_{F-C} = 6.8 Hz, C-2), 25.1 (² J_{F-C} = 28.8 Hz, C-5), 109.3 (² J_{F-C} = 21.8 Hz, C-3), 126.8 (*p*-C), 128.6 (*o*-C), 130.7 (*m*-C), 140.4 (⁴ J_{F-C} = 2.1 Hz, *i*-C, C–Se), 165.7 (¹ J_{F-C} = 269.7 Hz, C-4), 172.1 (CO₂ H).

Syntheses of R¹Se–EMe₃ (1–4). – **General Procedure:** Approximately 100 mL liquid ammonia was added to 15 mmol diselenide **14**. To this stirred solution, 30 mmol (210 mg) lithium was added, until the solution was slightly blue. After evaporation of the solvent under argon the remaining NH₃ was completely removed under vacuum. To the colorless solid 50 mL dry THF was added. To this

FULL PAPER

mixture was added a solution of 30 mmol Me₃Si–Cl (3.26 g), Me₃Ge–Cl (4.60 g) or Me₃Sn–Cl (5.98 g) in 10 mL THF, or solid Me₃Pb–Cl (8.63 g), over 20 min under Ar at room temperature, and subsequently stirred for 3 h. For the Si, Ge, and Sn derivatives the THF was removed at normal pressure and the product was distilled directly from the reaction flask. It was then redistilled for further purification. For the Pb derivatives, after adding 500 mL ice water, the organic layer was separated. The aqueous phase was treated with ether (3 × 100 mL), the ether-containing phases were washed with ice water (1 × 100 mL) and dried (Na₂SO₄). After removal of the solvent the product was purified by column chromatography (5 cm silica gel, *n*-hexane). For yields see Table 3.

Table 3. Syntheses of the selenides 1-4

R ¹ Se–EMe ₃	Yield	
PhSe–SiMe ₃ (1c)	4.13 g (60%)	b.p. 66–68 °C/1.3 mbar
EtSe–GeMe ₃ (2b)	5.42 g (80%)	b.p. 52–55 °C/23 mbar
PhSe–GeMe ₃ (2c)	6.82 g (83%)	b.p. 65 °C/0.07 mbar
MeSe–SnMe ₃ (3a)	6.11 g (79%)	b.p. 65–67 °C/23 mbar
PhSe–SnMe ₃ (3c)	8.16 g (85%)	b.p. 72 °C/0.09 mbar
MeSe–PbMe ₃ (4a)	8.31 g (80%)	after chromatography
PhSe–PbMe ₃ (4c)	10.54 g (86%)	after chromatography

Table 4. Crystal data and structure refinement for compound 9e

C ₁₃ H ₁₅ FO ₂ Se 301.21 Monoclinic
Monoclinic
P21/n
$0.798 \times 0.152 \times 0.152$
14.719(2)
5.6667(16)
16.348(3)
90.00
92.699(13)
90.00
1362.1(5)
1.469
4
608
2.756

Data collection

Diffractometer	STOE Stadi4
Radiation	$Mo-K_a$, 0.71071 Å
	graphite monochromator
T[K]	298 (2)
Scan mode	$2\theta/\omega = 1.0$
hkl range	-13/13, 0/7, 0/11
Measured reflections	2040
Unique refl. ($>2\sigma_I$)	1953
$R_{\rm int}$	0.0277
Used refl.	1953
T_{\min}/T_{\max}	0.4872/0.5841

Refinement

Refined parameters $R_1^{[a]}$	175 0.0393 (1098 refl.)
$[F_{\rm o} > 4\sigma(F_{\rm o})] \ wR2^{\rm [b]} \ (all)$	0.1129
GooF (all) Weighting par. $a,b^{[c]}$ ρ_{final} (max/min) [eÅ ⁻³]	0.976 0.0724/0.0169 0.408/-0.270

[[]a] $R1 = \Sigma ||F_0| - |F_0||/\Sigma |F_0|$, - [b] $R2 = [\Sigma w(F_0^2 - F_0^2)^2/\Sigma w(F_0^2)^2]^{1/2}$. - [c] $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$; $P = (F_0^2 + 2F_0^2)/3$

Ethylselenotrimethylsilane (1b): Analogously to ref.^[30] bis(trimethylsilyl)selenide (15; 50 mmol, 11.3 g) was added to a solution of Na (50 mmol, 1.15 g) in ca. 100 mL of liquid NH₃ and stirred until it decolorized. After evaporation of the ammonia under Ar, the resulting (Me₃Si)₂NH was removed under vacuum at 50 °C. 50 mL of pure THF was added to the remaining Me₃Si–SeNa. To this mixture ethyl iodide (50 mmol, 7.80 g) was added over 30 min under argon and stirring. It was then stirred for a further 4 h. After filtration and washing of the NaI precipitate with 30 mL of pentane the filtrate was fractionated using a short Vigreux column. Yield of 1b 5.93 g (65%), b.p. 32–34 °C/20 mbar.

p-(Ethoxycarbonyl)phenylselenotrimethylstannane (3d): Bis[p-(ethoxycarbonyl)phenyl]diselenide (14d; 5 mmol, 2.28 g) was suspended in 40 mL EtOH under stirring at room temperature and Ar and reduced by addition of small portions of NaBH₄ (10 mmol, 380 mg). After stirring (30 min), a solution Me₃Sn–Cl (10 mmol, 2.00 g) in 5 mL of THF was added to this suspension and further stirred for 30 min. This mixture was taken up with 250 mL of H₂O and extracted with CHCl₃ (3 \times 50 mL). The extract was washed with water and dried (Na₂SO₄). The product was purified by column chromatography (silica gel, n-hexane/ether 10:1). Yield of 3d 2.77 g (71%).

X-ray Crystal Structure Analysis of Compound 9e: A single crystal of compound **9e** was examined with a four-circle diffractometer at room temperature in air. Intensity data were corrected for Lorentz and polarization effects. An absorption correction had to be applied with the ψ -scan technique. The structure was solved by direct methods and refined by full-matrix least-squares techniques against F^2 (see Table 4).^[45] The thermal motion of all non-hydrogen atoms was treated anisotropically. The hydrogen atom at O1 was located from the difference Fourier map. All the other hydrogen atoms were calculated in idealized positions and allowed to ride on their corresponding carbon atoms. Their isotropic thermal parameters were set to 1.2 times that of the adjacent C atom.

Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-138770. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

H. Poleschner was encouraged by the Wissenschaftler-Integrations-Programm (WIP, 1994–1996) at the Universität Potsdam, Institut für Organische Chemie und Strukturanalytik. We thank Ms. C. Hense-Lamatsch for her committed laboratory assistance. We would like to acknowledge Dr. A. Lehmann, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin-Adlershof, and Dr. G. Holzmann, Institut für Chemie, Organische Chemie, Freie Universität Berlin, for recording the mass spectra. Also we are grateful to Dr. H. Mehner, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin-Adlershof, for recording the Mößbauer spectrum. We are indebted to Dr. D. Lentz, Institut für Chemie, Anorganische und Analytische Chemie, Freien Universität Berlin, for the synthesis of xenon difluoride.

^[1] Parts of this work were presented at the 12th European Symposium on Fluorine Chemistry, Freie Universität Berlin, August/September 1998, Abstracts of Papers p. PII-71.

^[2] S. Tomoda, Y. Usuki, Chem. Lett. 1989, 1235-1236.

^[3] Y. Usuki, M. Iwaoka, S. Tomoda, Chem. Lett. 1992, 1507– 1510

- [4] J. R. McCarthy, D. P. Matthews, C. L. Barney, *Tetrahedron Lett.* 1990, 31, 973–976.
- [5] K. C. Nicolaou, N. A. Petasis, D. A. Claremon, *Tetrahedron* 1985, 41, 4835–4841.
- [6] C. Saluzzo, G. Alvernhe, D. Anker, G. Haufe, *Tetrahedron Lett.* 1990, 31, 663–666.
- [7] C. Saluzzo, G. Alvernhe, D. Anker, G. Haufe, *Tetrahedron Lett.* 1990, 31, 2127–2130.
- [8] K. Uneyama, M. Kanai, Tetrahedron Lett. 1990, 31, 3583–3586.
- [9] S. A. Lermontov, S. I. Zavorin, A. N. Pushin, A. N. Chekhlov, N. S. Zefirov, P. J. Stang, *Tetrahedron Lett.* 1993, 34, 703–706.
- [10] A. N. Chekhlov, S. A. Lermontov, S. I. Zavorin, N. S. Zefirov, Dokl. Akad. Nauk 1993, 332, 198–202; Chem. Abstr., 1994, 120, 217957y.
- [11] K. K. Laali, W. Fiedler, M. Regitz, Chem. Commun. 1997, 1641–1642.
- [12] A. N. Chekhlov, S. A. Lermontov, S. I. Zavorin, N. S. Zefirov, Dokl. Akad. Nauk 1993, 330, 729–732; Chem. Abstr. 1994, 120, 164387d.
- [13] S. A. Lermontov, S. I. Zavorin, I. V. Bakhtin, A. N. Pushin, N. S. Zefirov, P. J. Stang, J. Fluorine Chem. 1998, 87, 75–83.
- [14] A. N. Chekhlov, S. A. Lermontov, S. I. Zavorin, N. S. Zefirov, Dokl. Akad. Nauk 1992, 323, 1112–1115; Chem. Abstr. 1993, 118, 147242u.
- [15] S. A. Lermontov, S. I. Zavorin, I. V. Bakhtin, N. S. Zefirov, P. J. Stang, *Phosphorus, Sulfur, Silicon* 1995, 102, 283–286.
- [16] H. Poleschner, M. Heydenreich, K. Spindler, G. Haufe, Synthesis 1994, 1043–1049.
- [17] H. Poleschner, M. Heydenreich, U. Schilde, *Liebigs Ann.* 1996, 1187–1193.
- ^[18] H. Poleschner, U. Schilde, *Acta Cryst.* **1996**, *C52*, 644–647 and herein cited literature.
- [19] H. Poleschner, M. Heydenreich, R. Radeglia, Magn. Reson. Chem. 1999, 37, 333–345.
- [20a] M. R. Detty, Tetrahedron Lett. 1979, 4189–4192. [20b] M. R. Detty, J. Org. Chem. 1980, 45, 924–926. [20c] M. R. Detty, M. D. Seidler J. Org. Chem. 1981, 46, 1283–1292.
- [21] K. Licht, H. Geissler, P. Koehler, K. Hottmann. H. Schnorr, H. Kriegsmann, Z. Anorg. Allg. Chem. 1971, 385, 271–288.
- [22] D. W. Grant, J. L. Wardell, J. Organomet. Chem. 1984, 276, 161–166.
- ^[23] A. M. Forster, A. J. Downs, *Polyhedron* **1985**, *4*, 1625–1635.
- [24] G. Pandey, K. S. S. Poleshwar Rao, Angew. Chem. 1995, 107, 2934–2935.
- ^[25] M. Lalonde, T. H. Chan, Synthesis **1985**, 817–845.

- [26] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Synthesis, 2th. ed., Wiley, New York, 1991, 68–86.
- [27] P. J. Kocienski, Protecting Groups, Thieme, Stuttgart, 1994, 28–42.
- ^[28] J. E. Drake, R. T. Hemmings, *J. Chem. Soc., Dalton Trans.* **1976**, 1730–1734.
- [29] N. Miyoshi, H. Ishii, K. Kondo, S. Murai, N. Sonoda, Synthesis 1979, 300–301.
- [30] M. Schmidt, E. Kiewert, H. Lux, C. Sametschek, *Phosphorus and Sulfur* **1986**, 26, 163–167.
- [31] [31a] S. Tomoda, M. Shimoda, Y. Takeuchi, *Chem. Lett.* **1989**, 1373–1376. [31b] S. Tomoda, M. Shimoda, Y. Takeuchi, Y. Iitaka, *Chem. Lett.* **1988**, 535–538.
- [32] E. W. Abel, D. A. Armitage, D. B. Brady, J. Organomet. Chem. 1966, 5, 130–135.
- [33] J. D. Kennedy, W. McFarlane, J. Chem. Soc., Dalton Trans. 1973, 2134–2139.
- [34] J. W. Anderson, G. K. Barker, J. E. Drake, M. Rodger, J. Chem. Soc., Dalton Trans. 1973, 1716–1724.
- [35] A. Krief, E. Badaoui, W. Dumont, *Tetrahedron Lett.* **1993**, 34, 8521–8522.
- [36] [36a] W. L. Richardson, U. S. 3,010,980, Chem. Abstr. 1962, 56, 11620 d. [36b] W. L. Richardson, U. S. 3,116,126, Chem. Abstr. 1964, 60, 6686 c.
- [37] J. E. Drake, B. M. Glavincevski, R. E. Humphries, A. Majid, Can. J. Chem. 1979, 57, 1426–1430.
- [38] B. Wrackmeyer, K. Bauer, G. Kehr, U. Dörfler, *Main Group Met. Chem.* 1995, 18, 1–7.
- [39] H. Reinholdt in *Houben-Weyl*, 4th ed., Vol. 9, Thieme, Stuttgart, 1955, 1086–1104.
- [40] D. H. O'Brien, N. Dereu, C.-K. Huang, K. J. Irgolic, F. F. Knapp, Jr., Organometallics 1983, 2, 305–307.
- [41] M. Schmidt, H. Ruf, Z. Anorg. Allg. Chem. 1963, 321, 270– 273.
- [42] W. Kwasnik in Handbuch der Präparativen Anorganischen Chemie, 3th ed., Vol. 1; (Ed.: G. Brauer), Enke, Stuttgart, 1975, 285.
- [43] [43a] F. Klanberg, E. L. Muetterties, *Inorg. Chem.* 1968, 7, 155–160. [43b] S. Berger, S. Braun, H.-O. Kalinowski, ¹⁹F-NMR Spektroskopie, Thieme, Stuttgart, 1994, 65.
- [44] R. Eujen, R. Mellies, J. Fluorine Chem. 1983, 22, 263–280.
- [45] G. M. Sheldrick, SHELX-97. Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

Received October 29, 1999 [199384]